
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

163

Creating VHDL Descriptions of Asynchronous
Dual-rail RSFQ Logic

Ivan Dimitrov Panayotov, Tania Ilieva Stoiadinova

 Krasimira Vasileva Filipova, Valeri Markov Mladenov, Thomas Ortlepp

Abstract – This paper describes a principle approach to

implement VHDL descriptions of dual-rail rapid single flux
quantum circuits (RSFQ). Since RSFQ is naturally pulse
driven, the dual-rail data coding is prompting the event
driven data processing at very high speed. We describe
methods and challenges to create corresponding VHDL
models for simulation. The implementation is done with
respect to a later implementation of a parameter driven
optimization of complex logic cells

Keywords –Dual-rail data coding, RSFQ, asynchronous
logic, behavior-based simulation, VHDL description

I. INTRODUCTION

RSFQ LOGIC

Rapid single flux quantum (RSFQ) is a digital
electronics technology based on the flux quantization in
superconducting materials [1]. It uses transfer, processing
and storage of single flux quanta to realize arbitrary logic
functionality. It is naturally a digital technology, were
signal values are represented by pulses instead of static
levels. The data exchange is characterized by transient
voltage pulses, which occur at defined time slots. In
comparison to transistors in CMOS technology, the
Josephson junctions are the active switching element in
RSFQ technology.

There typical data coding is based on a synchronous
clocking scheme, were the logic the ‘1’ is represented by
the presence of a pulse within the clock-cycle while the ‘0’
by its absence. In contras, the dual-rail logic utilizes two
signal lines where a pulse on the one represents a logical
‘1’ and a pulse on the other represents a logical ‘0’. This
data coding is completely asynchronous and the timing
information is contained in the appearance of signals
themselves [3]. RSFQ circuitry is essentially self clocking,
making the asynchronous circuit designs much more
practical. This kind new logic family can operates at very

high frequencies above 100 GHz [2]. In this case, the gate
delay is similar to the pulse propagation delay between
cells, which makes the design of complex circuits very
challenging.
HDL LANGUAGES

Modern hardware description languages such as VHDL
and Verilog-HDL allow the creation of different digital
elements and systems. Initially intended for simulations
and analysis, now they provide the ability for automatic
synthesis of electric circuits from register transfer level and
behavioral description level. As these languages are IEEE
standards all circuit descriptions are reusable.

VHDL is used to build descriptions of both synchronous
and asynchronous circuits and provides different language
constructs for implementing delays and timing. Even
though this could make the descriptions non-synthesizable,
the language is very suitable for the creation of timed dual-
rail logic descriptions for simulations only.

The VHDL descriptions with timing parameters
extracted from analog circuit simulations of individual cells
provides digital models of these basic logic elements that
can be used to build more complex logic circuits in order to
speed up circuit analysis, enable the timing analysis and
future parameter optimization.

II. VHDL DESIGN

There are two ways to describe the behavior of the dual-
rail RSFQ logic element. In first one, the incoming pulses
can be used as triggering events to start the internal
generation of the events and output signals. The description
using this approach is coded and simulated for a dual-rail
AND gate. The symbol of the element is given on figure 1.

Figure 1 Dual-rail AND element symbol representation

Each one of the two inputs A and B are composed of two
physical signal lines – one for the logical ‘1’ and a second
one for the logical ‘0’. A simplified truth table for the dual-
rail AND gate is given in table 1.

TABLE 1. TRUTH TABLE OF DUAL-RAIL AND.

A_1 A_0 B_1 B_0 Y_1 Y_0
pulse - pulse - pulse -
pulse - - pulse - pulse
- pulse pulse - - pulse
- pulse - pulse - pulse
pulse pulse - - - -
- - pulse pulse - -

Ivan Panayotov - Faculty of Electronic Engineering and
Technologies, Technical University - Sofia, 8 Kliment Ohridski
blvd., 1000 Sofia, Bulgaria, e-mail: idp@ecad.tu-sofia.bg

Tania Stoiadinova - Dept. Theoretical Electrical Engineering,
Technical University - Sofia, 8 Kliment Ohridski blvd., 1000
Sofia, Bulgaria, e-mail: tstoiadinova@abv.bg

Krasimira Filipova - Dept. Theoretical Electrical Engineering,
Technical University - Sofia, 8 Kliment Ohridski blvd., 1000
Sofia, Bulgaria, e-mail: KFilipova@abv.bg

Valeri Mladenov - Dept. Theoretical Electrical Engineering,
Technical University - Sofia, 8 Kliment Ohridski blvd., 1000
Sofia, Bulgaria, e-mail: valerim@tu-sofia.bg

Thomas Ortlepp – Institute of Information Technology, RSFQ
design group, Ilmenau University of Technology, P.O. Box
100565, 98684 Ilmenau, Germany, e-mail: thomas.ortlepp@tu-
ilmenau.de

ANNUAL JOURNAL OF ELECTRONICS, 2009

164

The fragment for input signal capturing code is given in
table 2. Here the “wait” operator is used to specify the
delay and the width of each individual pulse of the output.
In the simples case, the processing delay is common for all
input signal combinations and relative timings.

TABLE 2. VHDL CODE PART DESCRIBING INPUT SIGNALS CAPTURING
IN DUAL-RAIL AND.

if(a_1'event and a_1 ='1') then -- one on a
 if(flag_b_received = '1') then -- b already received
 assert (NOW - t_b_received) >= t_in report "Minnimum time

between input pulses error!" severity ERROR;
 y_int <= value_b;
 flag_b_received <= '0';
 value_b <='0';
 gen_out <= not gen_out;
 else
 t_a_received <= NOW;
 value_a <= '1';
 flag_a_received <= '1';
 end if;

 elsif(a_0'event and a_0 ='1') then -- zero on a
…

 elsif(b_0'event and b_0 ='1') then -- zero on b
 if(flag_a_received = '1') then -- a already received
 assert (NOW - t_a_received) >= t_in report "Minnimum time

between input pulses error!" severity ERROR;
 y_int <= '0';
 flag_a_received <= '0';
 value_a <='0';
 gen_out <= not gen_out;

 else
 t_b_received <= NOW;
 value_b <= '0';
 flag_b_received <= '1';
 end if;

 end if;

A mechanism of checking the time between input pulses
is provided by using the “assert” statement. In case of time
violations an error message is displayed.

On each triggering event – rising edge of the input signal
the check is made if a pulse on the other input was already
received. The internal signal is used to store these
information.

The connection between input signal conditions and the
output generation is provided by internal flags that cause
separate processes to be executed. The code fragment for
these processes is presented in table 3. The process does
not have a sensitivity list as it contains the “wait”
statements. It is triggered on every change of the “gen_out”
signal. The value of the output is generated depending on
the value of the internal signal “y_int” – if it is ‘1’ then a
pulse on “y_1” line is formed, if it is ‘0’ then the pulse is
on “y_0” line. The pulse duration is fixed to 2 ps, but this
can be be changed, depending in the circuit speed.

TABLE 3. VHDL CODE PART DESCRIBING THE OUTPUT SIGNAL
GENERATION IN A DUAL-RAIL AND GATE.
process
begin
wait on gen_out;
 if(y_int ='1') then
 wait for t_out;
 y_1 <= '1'; wait for 2 ps; y_1 <= '0';
 elsif(y_int ='0') then wait for t_out;
 y_0 <= '1'; wait for 2 ps; y_0 <= '0';
 else
 y_0 <= '0'; y_1 <= '0';
 end if;

end process;
Here the delay and the pulse width are implemented

using the “wait” statement. This makes the code
completely non-synthesizable.

The simulation results of the AND gate are given on
figure 2.

Figure 2 Simulation results for dual-rail AND. Time is in ns.

 The output delay is measured from the rising edge of the
last received input signal. In this version of the code there
is no dependency on input signal order, but they are not
allows to appear at the same time, as this will violate the
“minimum time between pulses” condition and will result
in an error message. Initially the output lines are in
unknown state, while first value is assigned.
 The second approach that can be used is to have a single
process that implements all code logic and to use delay
mechanisms provided by the language. This makes it easy
to provide separate output delays for each input
combination, thus allowing more sophisticated control and
time tuning. The build-in the VHDL transport delay is
used. This kind of delay is specified by using the key word
“transport” in signal values assignments. It defines the time
required for the signal to pass through a device or a
transmission line. It is assigned upon every event on the
signal. This allows describing the actual behavior of the
circuit more accurate and close to real case. The delay
mechanism in VHDL is illustrated on figure 3. The signal
in the output repeats the input after a time required to pass
through the device. On each event – rising edge or falling
edge, delay time is ‘t’.

In table 4 a part of the code that shows beginning of the

process statement, the wait statement that captures changes
of the input signals and output signals conditional
assignments is given.

TABLE 4. VHDL CODE PART DESCRIBING BEGINNING OF THE
PROCESS, INPUT SIGNALS CAPTURING AND OUTPUT SIGNALS
ASSIGNMMENT IN DUAL-RAIL AND.
process
 begin
 wait on a_1, a_0, b_1, b_0;
if(a_1'event and b_1'event) then
 if (a_1 = '1' and b_1 = '1') then
 y_1 <= transport (a_1 and b_1) after t_out_ab_e_11;
 else
 y_1 <= transport '0' after t_out_ab_e_11;
 end if;
elsif (a_1'event and b_0'event) then -- one on a and zero on b at same
time
…
elsif(a_0'event) then

Figure 3 Transport delay mechanism in VHDL

ANNUAL JOURNAL OF ELECTRONICS, 2009

165

 if (a_0 ='1') then
 if(flag_b_received = "11") then
 assert (NOW - t_b_received) >= t_in report "Minnimum time
between input pulses error!" severity ERROR;
 y_0 <= transport a_0 after t_out_a_a_b_01;
 flag_b_received <= "01";
…

To implement the transport delay the assignment to the
output signals should be done on every change of the input
signal. For this reason the conditional “if” statements are
used to check for the specific events on inputs. Using only
“event” condition provides execution of the desired
statements on every change of the signal. Thus when a
pulse comes on an input and triggers a change of the
output, the transport delay will be applied.

The results from simulations are presented on figure 4.
Here again the outputs are in undefined state until first
meaningful values are outputted.

Figure 4 Simulation results for dual-rail AND gate by using the
second code version. Time is in ns.

The logic conditions are implemented in the “if”
statements which makes the description behavior. Even
though the output pulse is formed by the input one, its
presence on the line for logic ‘1’ or ‘0’ depends on the
execution of the “if” statement.

Using the same approach and methods for code creation
for a dual-rail XOR gate is described in VHDL and
simulated. A code fragment for the case using transport
delay is given in table 5.

TABLE 5. VHDL CODE PART OF DUAL-RAIL XOR.
process begin
 wait on a_1, a_0, b_1, b_0;
if(a_1'event and b_1'event) then
 if (a_1 = '1' and b_1 = '1') then
 y_0 <= transport (a_1 and b_1) after t_out_ab_e_11;
 else y_0 <= transport '0' after t_out_ab_e_11;
 end if;
elsif (a_1'event and b_0'event) then
 if (a_1 = '1' and b_0 = '1') then
 y_1 <= transport (a_1 and b_0) after t_out_ab_e_10;
 else y_1 <= transport '0' after t_out_ab_e_10;
 end if;

The simulation results for XOR element are presented on

figure 5.
The received results represent the actual behavior of

dual-rail logic elements in a simplified configuration. The
timing characteristics can easily be tuned to actually reflect
those of practical RSFQ cells, as they are specified by
using parameters.

Figure 5 Simulation results for dual-rail XOR gate. Time is in ns.

III. CONCLUSIONS

The way of creating VHDL description of dual-rail

asynchronous RSFQ logic cells is presented. Two different
approaches are considered and compared. The results prove
the ability of VHDL to be used for creating asynchronous
descriptions for the RSFQ elements. The developed codes
can be used for the analysis of more complex logic devices
that can be simulated behaviorally and speed up the circuit
analysis. Some of the considerations presented here can
also be used in descriptions of asynchronous circuits in
general. The practical impact of this method is related to
behaviour-models including parameterized timing
information. The practical processing delay depends on
circuit parameters a optimization process of the overall
circuit timing is essential to enable the correct circuit
operation of complex systems [7]

IV. ACKNOWLEDGMENTS

The research described in this paper was carried out
within the framework of contracts D002-106/15.12.2008
and D002-126/15.12.2008.

REFERENCES

[1] K.K. Likharev and V.K. Semenov, “RSFQ Logic/Memory
Family: A New Josephson-Junction Digital Technology for Sub-
Terahertz Clock-Frequency Digital Systems”, IEEE Trans. on
Applied Superconductivity, vol. 1, pp. 3-28, 1991
[2] H. Akaike et al., ”Demonstration of a 120 GHz single-flux
quantum shift register circuit based on a 10 kA/cm² Nb process”,
Superconductor Science and Technology, Vol. 19, pp. S320-S324,
2006
[3] B. Dimov, Th. Ortlepp, V. Mladenov, S. Terzieva, and F. H.
Uhlmann. The asynchronous rapid single-flux quantum
electronics – a promising alternative for the development of high-
performance digital circuits, Advances in Radio Science, 2008
[4] V. Mladenov, V. Todorov, B. Dimov, Th. Ortlepp, F. H.
Uhlmann,. “High-Level Design of Asynchronous RSFQ Digital
Circuits“. in proceedings of the 51. International Scientific
Colloquium, Ilmenau University of Technology, September 11-
15, 2006
[5] Ashenden P.J. “The Designer’s Guide to VHDL”, Second
Edition, Morgan Kaufmann Publishers, San Francisco 2001.
[6] Nancheva-Philipova K., M.Hristov, I. Panayotov, V. Hristov,
“Use of (v)HDL for electronic devices synthesis” – reference
book , KING 2001, Sofia 2004
[7] A. Fujimaki et al., “Demonstration of 2x3 regonfigurable
data-path processors with 14.000 Josephson junctions”,
Superconducting SFQ VLSI workshop 2009, Fukuoka, Japan

